

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

7

II Semester B.A./B.Sc. Examination, May 2017 (Repeaters) (2011 – 12 and Onwards) (NS) (Semester Scheme) (Prior to 2014 – 15) MATHEMATICS (Paper – II)

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all questions.

I. Answer any fifteen questions:

 $(15 \times 2 = 30)$

- 1) Define a cyclic group.
- 2) In a group G, if 0(a) = n and (n, m) = d then prove that $0(a^m) = \frac{n}{d}$, for $a \in G$.
- 3) Find the number of generators of the cyclic group of order 60.
- 4) Define a left coset and a right coset of a subgroup of a group.
- 5) If G is a finite group then prove that $a^{0(G)} = e \ \forall a \in G$, where e is the identity element of the group G.
- 6) Find the angle between the radius vector and the tangent to the curve $r^2=a^2\cos 2\theta \text{ at }\theta=\frac{\pi}{6}.$
- 7) Find the angle between the curves r = a and $r = 2a\cos\theta$.
- 8) Show that for the curve $r = a\theta$ the polar subnormal is constant and for the curve $r\theta = a$ the polar subtangent is constant.
- 9) Find the pedal equation of the curve $r = a(1+\cos\theta)$.
- 10) Find $\frac{ds}{dt}$ for the curve x = a(t + sint), y = a(1 cost).

P.T.O.

- 11) Find the radius of curvature of the curve whose pedal equation is $r^3 = a^2p$.
- 12) Find the envelope of the family of straight lines $y = mx + \frac{a}{m}$ where m is a parameter.
- 13) Find the asymptotes parallel to the coordinate axes for the curve $xy^2 = y^2 + x^3$.
- 14) Find the length of an arch of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$, $0 \le \theta \le 2\pi$.
- 15) Find the area included between the parabola $y^2 = 4ax$ and it's latus rectum.
- 16) Find the area of the surface generated by revolving about y-axis the curve $x = y^3$ from y = 0 to y = 2.
- 17) Solve: $\frac{dy}{dx} + 1 = e^{x+y}$.
- 18) Solve: $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$.
- 19) Find the integrating factor of the differential equation $\frac{dy}{dx} + \frac{3x^2}{1+x^3}y = \frac{\sin^2 x}{1+x^3}$.
- 20) Solve: $p^2 5p 6 = 0$.
- II. Answer any three questions:

 $(3 \times 5 = 15)$

- 1) In a group G prove that $0(a) = 0(a^{-1}), \ \forall a \in G$.
- 2) If G is a cyclic group of order 'n' generated by $a \in G$ then prove that $a^K(K \in Z)$ is also a generator of G iff (K, n) = 1.
- 3) Prove that every subgroup of a cyclic group is cyclic.
- 4) State and prove Fermat's theorem.
- 5) Prove that a finite group of composite order has proper subgroups.

00000

III. Answer any three questions:

(3×5=15)

- 1) Show that the curves $r^n = a^n cosn \theta$ and $r^n = b^n sinn \theta$ intersect orthogonally.
- 2) Find the pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 3) Derive an expression for $\frac{ds}{dx}$ for a Cartesian curve.
- 4) Find the radius of curvature at any point of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 5) Find the evolute of the curve $x = a \left(\cos t + \log \tan \left(\frac{t}{2} \right) \right)$, $y = a \sin t$.

IV. Answer any two of the following:

(2×5=10

- 1) Find the envelope of the family of circles $x^2 + y^2 2ax \cos \alpha 2y\sin \alpha = c^2$, where α is a parameter.
- 2) Find all the asymptotes of the curve

$$x^3 + 3x^2y - 4y^3 - x + y + 3 = 0.$$

- 3) Find the position and nature of the double points on the curve $(2y + x + 1)^2 4(1 x)^5 = 0$.
- 4) Trace the Lemniscate of Bernoulli $r^2 = a^2 \cos 2\theta$.

V. Answer any two questions:

 $(2 \times 5 = 1)$

- 1) Find the length of the arc of the parabola $y^2 = 4ax$ which is intercepted between the points of intersection with y = 2x.
- 2) Find the area bounded by the astroid $x^{2/3} + y^{2/3} = a^{2/3}$; a > 0.
- 3) Find the volume of solid obtained by revolving an arch of the cycloid x = a(t + sint), y = a(1 + cost) about x axis.